Chapter 7: Problem 1
What kinds of functions can be integrated using partial fraction decomposition?
Chapter 7: Problem 1
What kinds of functions can be integrated using partial fraction decomposition?
All the tools & learning materials you need for study success - in one app.
Get started for freeChallenge Show that with the change of variables \(u=\sqrt{\tan x}\) the integral \(\int \sqrt{\tan x} d x\) can be converted to an integral amenabl to partial fractions. Evaluate \(\int_{0}^{\pi / 4} \sqrt{\tan x} d x\)
Find the volume of the following solids. The region bounded by \(y=1 /(x+2), y=0, x=0,\) and \(x=3\) is revolved about the line \(x=-1\)
An integrand with trigonometric functions in the numerator and denominator can often be converted to a rational integrand using the substitution \(u=\tan (x / 2)\) or \(x=2 \tan ^{-1} u .\) The following relations are used in making this change of variables. $$A: d x=\frac{2}{1+u^{2}} d u \quad B: \sin x=\frac{2 u}{1+u^{2}} \quad C: \cos x=\frac{1-u^{2}}{1+u^{2}}$$ $$\text { Evaluate } \int \frac{d x}{1+\sin x+\cos x}$$
The following integrals require a preliminary step such as long division or a change of variables before using partial fractions. Evaluate these integrals. $$\int \sqrt{e^{x}+1} d x \text { (Hint: Let } u=\sqrt{e^{x}+1}$$
The nucleus of an atom is positively charged because it consists of positively charged protons and uncharged neutrons. To bring a free proton toward a nucleus, a repulsive force \(F(r)=k q Q / r^{2}\) must be overcome, where \(q=1.6 \times 10^{-19} \mathrm{C}\) is the charge on the proton, \(k=9 \times 10^{9} \mathrm{N} \cdot \mathrm{m}^{2} / \mathrm{C}^{2}, Q\) is the charge on the nucleus, and \(r\) is the distance between the center of the nucleus and the proton. Find the work required to bring a free proton (assumed to be a point mass) from a large distance \((r \rightarrow \infty)\) to the edge of a nucleus that has a charge \(Q=50 q\) and a radius of \(6 \times 10^{-11} \mathrm{m}.\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.