Chapter 7: Problem 1
What are the two general ways in which an improper integral may occur?
Chapter 7: Problem 1
What are the two general ways in which an improper integral may occur?
All the tools & learning materials you need for study success - in one app.
Get started for freeGraph the integrands and then evaluate and compare the values of \(\int_{0}^{\infty} x e^{-x^{2}} d x\) and \(\int_{0}^{\infty} x^{2} e^{-x^{2}} d x.\)
Find the volume of the described solid of revolution or state that it does not exist. The region bounded by \(f(x)=\left(x^{2}-1\right)^{-1 / 4}\) and the \(x\) -axis on the interval (1,2] is revolved about the \(y\) -axis.
An important function in statistics is the Gaussian (or normal distribution, or bell-shaped curve), \(f(x)=e^{-a x^{2}}.\) a. Graph the Gaussian for \(a=0.5,1,\) and 2. b. Given that \(\int_{-\infty}^{\infty} e^{-a x^{2}} d x=\sqrt{\frac{\pi}{a}},\) compute the area under the curves in part (a). c. Complete the square to evaluate \(\int_{-\infty}^{\infty} e^{-\left(a x^{2}+b x+c\right)} d x,\) where \(a>0, b,\) and \(c\) are real numbers.
Use integration by parts to evaluate the following integrals. $$\int_{1}^{\infty} \frac{\ln x}{x^{2}} d x$$
\(A\) powerful tool in solving problems in engineering and physics is the Laplace transform. Given a function \(f(t),\) the Laplace transform is a new function \(F(s)\) defined by $$ F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t $$ where we assume that s is a positive real number. For example, to find the Laplace transform of \(f(t)=e^{-t},\) the following improper integral is evaluated: $$ F(s)=\int_{0}^{\infty} e^{-s t} e^{-t} d t=\int_{0}^{\infty} e^{-(s+1) t} d t=\frac{1}{s+1} $$ Verify the following Laplace transforms, where a is a real number. $$f(t)=\cos a t \longrightarrow F(s)=\frac{s}{s^{2}+a^{2}}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.