Chapter 7: Problem 1
Give some examples of analytical methods for evaluating integrals.
Chapter 7: Problem 1
Give some examples of analytical methods for evaluating integrals.
All the tools & learning materials you need for study success - in one app.
Get started for freeRefer to the summary box (Partial Fraction Decompositions) and evaluate the following integrals. $$\int \frac{x}{(x-1)\left(x^{2}+2 x+2\right)^{2}} d x$$
The following integrals require a preliminary step such as long division or a change of variables before using partial fractions. Evaluate these integrals. $$\int \frac{2 x^{3}+x^{2}-6 x+7}{x^{2}+x-6} d x$$
Use the Trapezoid Rule (Section 7 ) to approximate \(\int_{0}^{R} e^{-x^{2}} d x\) with \(R=2,4,\) and 8. For each value of \(R\), take \(n=4,8,16,\) and \(32,\) and compare approximations with successive values of \(n .\) Use these approximations to approximate \(I=\int_{0}^{\infty} e^{-x^{2}} d x.\)
Let \(R\) be the region between the curves \(y=e^{-c x}\) and \(y=-e^{-c x}\) on the interval \([a, \infty),\) where \(a \geq 0\) and \(c \geq 0 .\) The center of mass of \(R\) is located at \((\bar{x}, 0)\) where \(\bar{x}=\frac{\int_{a}^{\infty} x e^{-c x} d x}{\int_{a}^{\infty} e^{-c x} d x} .\) (The profile of the Eiffel Tower is modeled by the two exponential curves.) a. For \(a=0\) and \(c=2,\) sketch the curves that define \(R\) and find the center of mass of \(R\). Indicate the location of the center of mass. b. With \(a=0\) and \(c=2,\) find equations of the lines tangent to the curves at the points corresponding to \(x=0.\) c. Show that the tangent lines intersect at the center of mass. d. Show that this same property holds for any \(a \geq 0\) and any \(c>0 ;\) that is, the tangent lines to the curves \(y=\pm e^{-c x}\) at \(x=a\) intersect at the center of mass of \(R\) (Source: P. Weidman and I. Pinelis, Comptes Rendu, Mechanique \(332(2004): 571-584 .)\)
Consider the curve \(y=\ln x\) a. Find the length of the curve from \(x=1\) to \(x=a\) and call it \(L(a) .\) (Hint: The change of variables \(u=\sqrt{x^{2}+1}\) allows evaluation by partial fractions.) b. Graph \(L(a)\) c. As \(a\) increases, \(L(a)\) increases as what power of \(a ?\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.