Chapter 6: Problem 75
The harmonic sum is \(1+\frac{1}{2}+\frac{1}{3}+\dots+\frac{1}{n} .\) Use a right Riemann sum to approximate \(\int_{1}^{n} \frac{d x}{x}(\) with unit spacing between the grid points) to show that \(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}>\ln (n+1)\) Use this fact to conclude that \(\lim _{n \rightarrow \infty}\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\right)\) does not exist.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.