Chapter 6: Problem 59
Find the volume of the torus formed when the circle of radius 2 centered at (3,0) is revolved about the \(y\) -axis. Use geometry to evaluate the integral.
Chapter 6: Problem 59
Find the volume of the torus formed when the circle of radius 2 centered at (3,0) is revolved about the \(y\) -axis. Use geometry to evaluate the integral.
All the tools & learning materials you need for study success - in one app.
Get started for freeWhen an object falling from rest encounters air resistance proportional to the square of its velocity, the distance it falls (in meters) after \(t\) seconds is given by \(d(t)=\frac{m}{k} \ln [\cosh (\sqrt{\frac{k g}{m}} t)],\) where \(m\) is the mass of the object in kilograms, \(g=9.8 \mathrm{m} / \mathrm{s}^{2}\) is the acceleration due to gravity, and \(k\) is a physical constant. a. A BASE jumper \((m=75 \mathrm{kg})\) leaps from a tall cliff and performs a ten-second delay (she free-falls for 10 s and then opens her chute). How far does she fall in \(10 \mathrm{s} ?\) Assume \(k=0.2\) b. How long does it take for her to fall the first \(100 \mathrm{m} ?\) The second 100 \(\mathrm{m} ?\) What is her average velocity over each of these intervals?
Derivative of In \(|x|\) Differentiate \(\ln x\) for \(x>0\) and differentiate \(\ln (-x)\) for \(x<0\) to conclude that \(\frac{d}{d x}(\ln |x|)=\frac{1}{x}\).
Find the mass of the following thin bars with the given density function.
$$\rho(x)=\left\\{\begin{array}{ll}
1 & \text { if } 0 \leq x \leq 2 \\
1+x & \text { if } 2
a. The definition of the inverse hyperbolic cosine is \(y=\cosh ^{-1} x \Leftrightarrow x=\cosh y,\) for \(x \geq 1,0 \leq y<\infty .\) Use implicit differentiation to show that \(\frac{d}{d x}\left(\cosh ^{-1} x\right)=\) \(1 / \sqrt{x^{2}-1}\). b. Differentiate \(\sinh ^{-1} x=\ln (x+\sqrt{x^{2}+1})\) to show that \(\frac{d}{d x}\left(\sinh ^{-1} x\right)=1 / \sqrt{x^{2}+1}\).
Evaluate the following definite integrals. Use Theorem 10 to express your answer in terms of logarithms. \(\int_{-2}^{2} \frac{d t}{t^{2}-9}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.