Chapter 6: Problem 54
Kelly started at noon \((t=0)\) riding a bike from Niwot to Berthoud, a distance of \(20 \mathrm{km},\) with velocity \(v(t)=15 /(t+1)^{2}\) (decreasing because of fatigue). Sandy started at noon \((t=0)\) riding a bike in the opposite direction from Berthoud to Niwot with velocity \(u(t)=20 /(t+1)^{2}\) (also decreasing because of fatigue). Assume distance is measured in kilometers and time is measured in hours. a. Make a graph of Kelly's distance from Niwot as a function of time. b. Make a graph of Sandy's distance from Berthoud as a function of time. c. How far has each person traveled when they meet? When do they meet? d. More generally, if the riders' speeds are \(v(t)=A /(t+1)^{2}\) and \(u(t)=B /(t+1)^{2}\) and the distance between the towns is \(D,\) what conditions on \(A, B,\) and \(D\) must be met to ensure that the riders will pass each other? e. Looking ahead: With the velocity functions given in part (d), make a conjecture about the maximum distance each person can ride (given unlimited time).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.