Chapter 6: Problem 54
A rigid body with a mass of \(2 \mathrm{kg}\) moves along a line due to a force that produces a position function \(x(t)=4 t^{2},\) where \(x\) is measured in meters and \(t\) is measured in seconds. Find the work done during the first 5 s in two ways. a. Note that \(x^{\prime \prime}(t)=8 ;\) then use Newton's second law \(\left(F=m a=m x^{\prime \prime}(t)\right)\) to evaluate the work integral \(W=\int_{x_{0}}^{x_{f}} F(x) d x,\) where \(x_{0}\) and \(x_{f}\) are the initial and final positions, respectively. b. Change variables in the work integral and integrate with respect to \(t .\) Be sure your answer agrees with part (a).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.