Chapter 6: Problem 17
How much work is required to move an object from \(x=0\) to \(x=3\) (measured in meters) in the presence of a force (in \(\mathrm{N}\) ) given by \(F(x)=2 x\) acting along the \(x\) -axis?
Chapter 6: Problem 17
How much work is required to move an object from \(x=0\) to \(x=3\) (measured in meters) in the presence of a force (in \(\mathrm{N}\) ) given by \(F(x)=2 x\) acting along the \(x\) -axis?
All the tools & learning materials you need for study success - in one app.
Get started for freeA spring has a restoring force given by \(F(x)=25 x .\) Let \(W(x)\) be the work required to stretch the spring from its equilibrium position \((x=0)\) to a variable distance \(x\) Graph the work function. Compare the work required to stretch the spring \(x\) units from equilibrium to the work required to compress the spring \(x\) units from equilibrium.
How much work is required to move an object from \(x=1\) to \(x=3\) (measured in meters) in the presence of a force (in \(\mathrm{N}\) ) given by \(F(x)=2 / x^{2}\) acting along the \(x\) -axis?
Refer to Exercise \(95,\) which gives the position function for a falling body. Use \(m=75 \mathrm{kg}\) and \(k=0.2\) a. Confirm that the base jumper's velocity \(t\) seconds after $$\text { jumping is } v(t)=d^{\prime}(t)=\sqrt{\frac{m g}{k}} \tanh (\sqrt{\frac{k g}{m}} t)$$ b. How fast is the BASE jumper falling at the end of a 10 s delay? c. How long does it take for the BASE jumper to reach a speed of \(45 \mathrm{m} / \mathrm{s} \text { (roughly } 100 \mathrm{mi} / \mathrm{hr}) ?\)
A cylindrical water tank has height 8 m and radius \(2 \mathrm{m}\) (see figure). a. If the tank is full of water, how much work is required to pump the water to the level of the top of the tank and out of the tank? b. Is it true that it takes half as much work to pump the water out of the tank when it is half full as when it is full? Explain.
Use l'Hôpital's Rule to evaluate the following limits. \(\lim _{x \rightarrow \infty} \frac{1-\operatorname{coth} x}{1-\tanh x}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.