Chapter 6: Problem 17
Evaluate the following integrals. Include absolute values only when needed. $$\int \frac{e^{2 x}}{4+e^{2 x}} d x$$
Chapter 6: Problem 17
Evaluate the following integrals. Include absolute values only when needed. $$\int \frac{e^{2 x}}{4+e^{2 x}} d x$$
All the tools & learning materials you need for study success - in one app.
Get started for freeFor large distances from the surface of Earth, the gravitational force is given by \(F(x)=G M m /(x+R)^{2},\) where \(G=6.7 \times 10^{-11} \mathrm{N} \cdot \mathrm{m}^{2} / \mathrm{kg}^{2}\) is the gravitational constant, \(M=6 \times 10^{24} \mathrm{kg}\) is the mass of Earth, \(m\) is the mass of the object in the gravitational field, \(R=6.378 \times 10^{6} \mathrm{m}\) is the radius of Earth, and \(x \geq 0\) is the distance above the surface of Earth (in meters). a. How much work is required to launch a rocket with a mass of \(500 \mathrm{kg}\) in a vertical flight path to a height of \(2500 \mathrm{km}\) (from Earth's surface)? b. Find the work required to launch the rocket to a height of \(x\) kilometers, for \(x>0\) c. How much work is required to reach outer space \((x \rightarrow \infty) ?\) d. Equate the work in part (c) to the initial kinetic energy of the rocket, \(\frac{1}{2} m v^{2},\) to compute the escape velocity of the rocket.
How much work is required to move an object from \(x=0\) to \(x=3\) (measured in meters) in the presence of a force (in \(\mathrm{N}\) ) given by \(F(x)=2 x\) acting along the \(x\) -axis?
Evaluate the following definite integrals. Use Theorem 10 to express your answer in terms of logarithms. \(\int_{1 / 8}^{1} \frac{d x}{x \sqrt{1+x^{2 / 3}}}\)
Properties of \(e^{x}\) Use the inverse relations between \(\ln x\) and \(e^{x}\) and the properties of \(\ln x\) to prove the following properties. a. \(e^{x-y}=\frac{e^{x}}{e^{y}}\) b. \(\left(e^{x}\right)^{y}=e^{x y}\)
Behavior at the origin Using calculus and accurate sketches, explain how the graphs of \(f(x)=x^{p} \ln x\) differ as \(x \rightarrow 0\) for \(p=\frac{1}{2}, 1,\) and 2
What do you think about this solution?
We value your feedback to improve our textbook solutions.