Chapter 6: Problem 16
Let \(R\) be the region bounded by the following curves. Use the shell method to find the volume of the solid generated when \(R\) is revolved about the \(x\) -axis. $$y=8, y=2 x+2, x=0, \text { and } x=2$$
Chapter 6: Problem 16
Let \(R\) be the region bounded by the following curves. Use the shell method to find the volume of the solid generated when \(R\) is revolved about the \(x\) -axis. $$y=8, y=2 x+2, x=0, \text { and } x=2$$
All the tools & learning materials you need for study success - in one app.
Get started for freeShow that \(\cosh ^{-1}(\cosh x)=|x|\) by using the formula \(\cosh ^{-1} t=\ln (t+\sqrt{t^{2}-1})\) and by considering the cases \(x \geq 0\) and \(x<0\).
A power line is attached at the same height to two utility poles that are separated by a distance of \(100 \mathrm{ft}\); the power line follows the curve \(f(x)=a \cosh (x / a) .\) Use the following steps to find the value of \(a\) that produces a sag of \(10 \mathrm{ft}\) midway between the poles. Use a coordinate system that places the poles at \(x=\pm 50\). a. Show that \(a\) satisfies the equation \(\cosh (50 / a)-1=10 / a\) b. Let \(t=10 / a,\) confirm that the equation in part (a) reduces to \(\cosh 5 t-1=t,\) and solve for \(t\) using a graphing utility. Report your answer accurate to two decimal places. c. Use your answer in part (b) to find \(a,\) and then compute the length of the power line.
A large building shaped like a box is 50 \(\mathrm{m}\) high with a face that is \(80 \mathrm{m}\) wide. A strong wind blows directly at the face of the building, exerting a pressure of \(150 \mathrm{N} / \mathrm{m}^{2}\) at the ground and increasing with height according to \(P(y)=150+2 y,\) where \(y\) is the height above the ground. Calculate the total force on the building, which is a measure of the resistance that must be included in the design of the building.
Suppose a force of \(15 \mathrm{N}\) is required to stretch and hold a spring \(0.25 \mathrm{m}\) from its equilibrium position. a. Assuming the spring obeys Hooke's law, find the spring constant \(k\) b. How much work is required to compress the spring \(0.2 \mathrm{m}\) from its equilibrium position? c. How much additional work is required to stretch the spring \(0.3 \mathrm{m}\) if it has already been stretched \(0.25 \mathrm{m}\) from its equilibrium position?
Use a calculator to make a table similar to Table 2 to approximate the following limits. Confirm your result with l'Hôpital's Rule. $$\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.