Chapter 6: Problem 107
There are several ways to express the indefinite integral of sech \(x\). a. Show that \(\int \operatorname{sech} x d x=\tan ^{-1}(\sinh x)+C\) (Theorem 9 ). (Hint: Write sech \(x=\frac{1}{\cosh x}=\frac{\cosh x}{\cosh ^{2} x}=\frac{\cosh x}{1+\sinh ^{2} x},\) and then make a change of variables.) b. Show that \(\int \operatorname{sech} x d x=\sin ^{-1}(\tanh x)+C .\) (Hint: Show that sech \(x=\frac{\operatorname{sech}^{2} x}{\sqrt{1-\tanh ^{2} x}}\) and then make a change of variables.) c. Verify that \(\int \operatorname{sech} x d x=2 \tan ^{-1}\left(e^{x}\right)+C\) by proving \(\frac{d}{d x}\left(2 \tan ^{-1}\left(e^{x}\right)\right)=\operatorname{sech} x\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.