Chapter 6: Problem 1
Suppose a cut is made through a solid object perpendicular to the \(x\) -axis at a particular point \(x .\) Explain the meaning of \(A(x)\)
Chapter 6: Problem 1
Suppose a cut is made through a solid object perpendicular to the \(x\) -axis at a particular point \(x .\) Explain the meaning of \(A(x)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeCalculate the work required to stretch the following springs 0.5 m from their equilibrium positions. Assume Hooke's law is obeyed. a. A spring that requires a force of \(50 \mathrm{N}\) to be stretched \(0.2 \mathrm{m}\) from its equilibrium position. b. A spring that requires \(50 \mathrm{J}\) of work to be stretched \(0.2 \mathrm{m}\) from its equilibrium position.
When the catenary \(y=a \cosh (x / a)\) is rotated around the \(x\) -axis, it sweeps out a surface of revolution called a catenoid. Find the area of the surface generated when \(y=\cosh x\) on \([-\ln 2, \ln 2]\) is rotated around the \(x\) -axis.
A glass has circular cross sections that taper (linearly) from a radius of \(5 \mathrm{cm}\) at the top of the glass to a radius of \(4 \mathrm{cm}\) at the bottom. The glass is \(15 \mathrm{cm}\) high and full of orange juice. How much work is required to drink all the juice through a straw if your mouth is \(5 \mathrm{cm}\) above the top of the glass? Assume the density of orange juice equals the density of water.
Find the mass of the following thin bars with the given density function.
$$\rho(x)=\left\\{\begin{array}{ll}
x^{2} & \text { if } 0 \leq x \leq 1 \\
x(2-x) & \text { if } 1
Refer to Exercises 95 and 96. a. Compute a jumper's terminal velocity, which is defined as \(\lim _{t \rightarrow \infty} v(t)=\lim _{t \rightarrow \infty} \sqrt{\frac{m g}{k}} \tanh (\sqrt{\frac{k g}{m}} t)\) b. Find the terminal velocity for the jumper in Exercise 96 \((m=75 \mathrm{kg} \text { and } k=0.2)\) c. How long does it take for any falling object to reach a speed equal to \(95 \%\) of its terminal velocity? Leave your answer in terms of \(k, g,\) and \(m\) d. How tall must a cliff be so that the BASE jumper \((m=75 \mathrm{kg}\) and \(k=0.2\) ) reaches \(95 \%\) of terminal velocity? Assume that the jumper needs at least \(300 \mathrm{m}\) at the end of free fall to deploy the chute and land safely.
What do you think about this solution?
We value your feedback to improve our textbook solutions.