Chapter 6: Problem 1
Explain the meaning of position, displacement, and distance traveled as they apply to an object moving along a line.
Chapter 6: Problem 1
Explain the meaning of position, displacement, and distance traveled as they apply to an object moving along a line.
All the tools & learning materials you need for study success - in one app.
Get started for freeA spring on a horizontal surface can be stretched and held \(0.5 \mathrm{m}\) from its equilibrium position with a force of \(50 \mathrm{N}\). a. How much work is done in stretching the spring \(1.5 \mathrm{m}\) from its equilibrium position? b. How much work is done in compressing the spring \(0.5 \mathrm{m}\) from its equilibrium position?
Use the following argument to show that \(\lim _{x \rightarrow \infty} \ln x\) \(=\infty\) and \(\lim _{x \rightarrow 0^{+}}\) \(\ln x=-\infty\). a. Make a sketch of the function \(f(x)=1 / x\) on the interval \([1,2] .\) Explain why the area of the region bounded by \(y=f(x)\) and the \(x\) -axis on [1,2] is \(\ln 2\) b. Construct a rectangle over the interval [1,2] with height \(\frac{1}{2}\) Explain why \(\ln 2>\frac{1}{2}\) c. Show that \(\ln 2^{n}>n / 2\) and \(\ln 2^{-n}<-n / 2\) d. Conclude that \(\lim _{x \rightarrow \infty} \ln x=\infty\) and \(\lim _{x \rightarrow 0^{+}} \ln x=-\infty\)
Refer to Exercise \(95,\) which gives the position function for a falling body. Use \(m=75 \mathrm{kg}\) and \(k=0.2\) a. Confirm that the base jumper's velocity \(t\) seconds after $$\text { jumping is } v(t)=d^{\prime}(t)=\sqrt{\frac{m g}{k}} \tanh (\sqrt{\frac{k g}{m}} t)$$ b. How fast is the BASE jumper falling at the end of a 10 s delay? c. How long does it take for the BASE jumper to reach a speed of \(45 \mathrm{m} / \mathrm{s} \text { (roughly } 100 \mathrm{mi} / \mathrm{hr}) ?\)
How much work is required to move an object from \(x=1\) to \(x=3\) (measured in meters) in the presence of a force (in \(\mathrm{N}\) ) given by \(F(x)=2 / x^{2}\) acting along the \(x\) -axis?
Use l'Hôpital's Rule to evaluate the following limits. \(\lim _{x \rightarrow 0} \frac{\tanh ^{-1} x}{\tan (\pi x / 2)}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.