Chapter 2: Problem 59
Explain why or why not Determine whether the following statements are true and give an explanation or counterexample. Assume \(a\) and \(L\) are finite numbers. a. If \(\lim _{x \rightarrow a} f(x)=L,\) then \(f(a)=L\) b. If \(\lim _{x \rightarrow a^{-}} f(x)=L,\) then \(\lim _{x \rightarrow a^{+}} f(x)=L\) c. If \(\lim _{x \rightarrow a} f(x)=L\) and \(\lim _{x \rightarrow a} g(x)=L,\) then \(f(a)=g(a)\) d. The limit \(\lim _{x \rightarrow a} \frac{f(x)}{g(x)}\) does not exist if \(g(a)=0\) e. If \(\lim _{x \rightarrow 1^{+}} \sqrt{f(x)}=\sqrt{\lim _{x \rightarrow 1^{+}} f(x)},\) it follows that \(\lim _{x \rightarrow 1} \sqrt{f(x)}=\sqrt{\lim _{x \rightarrow 1} f(x)}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.