Chapter 2: Problem 50
Asymptotes Use analytical methods and/or a graphing utility to identify the vertical asymptotes (if any) of the following functions. $$q(s)=\frac{\pi}{s-\sin s}$$
Chapter 2: Problem 50
Asymptotes Use analytical methods and/or a graphing utility to identify the vertical asymptotes (if any) of the following functions. $$q(s)=\frac{\pi}{s-\sin s}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine the end behavior of the following transcendental functions by evaluating appropriate limits. Then provide a simple sketch of the associated graph, showing asymptotes if they exist. $$f(x)=\frac{50}{e^{2 x}}$$
a. Evaluate \(\lim _{x \rightarrow \infty} f(x)\) and \(\lim _{x \rightarrow-\infty} f(x),\) and then identify any horizontal asymptotes. b. Find the vertical asymptotes. For each vertical asymptote \(x=a\), evaluate \(\lim _{x \rightarrow a^{-}} f(x)\) and \(\lim _{x \rightarrow a^{+}} f(x)\). $$f(x)=\frac{3 x^{4}+3 x^{3}-36 x^{2}}{x^{4}-25 x^{2}+144}$$
Let \(f(x)=\frac{|x|}{x} .\) Then \(f(-2)=-1\) and \(f(2)=1 .\) Therefore
\(f(-2)<0
Sketch a possible graph of a function \(f\) that satisfies all of the given conditions. Be sure to identify all vertical and horizontal asymptotes. $$\lim _{x \rightarrow 0^{+}} f(x)=\infty, \lim _{x \rightarrow 0^{-}} f(x)=-\infty, \lim _{x \rightarrow \infty} f(x)=1$$, $$\lim _{x \rightarrow-\infty} f(x)=-2$$
a. Evaluate \(\lim _{x \rightarrow \infty} f(x)\) and \(\lim _{x \rightarrow-\infty} f(x),\) and then identify any horizontal asymptotes. b. Find the vertical asymptotes. For each vertical asymptote \(x=a\), evaluate \(\lim _{x \rightarrow a^{-}} f(x)\) and \(\lim _{x \rightarrow a^{+}} f(x)\). $$f(x)=16 x^{2}\left(4 x^{2}-\sqrt{16 x^{4}+1}\right)$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.