Chapter 2: Problem 46
Asymptotes Use analytical methods and/or a graphing utility to identify the vertical asymptotes (if any) of the following functions. $$g(x)=2-\ln x^{2}$$
Chapter 2: Problem 46
Asymptotes Use analytical methods and/or a graphing utility to identify the vertical asymptotes (if any) of the following functions. $$g(x)=2-\ln x^{2}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeLimits with a parameter Let \(f(x)=\frac{x^{2}-7 x+12}{x-a}\) a. For what values of \(a,\) if any, does \(\lim _{x \rightarrow a^{+}} f(x)\) equal a finite number? b. For what values of \(a,\) if any, does \(\lim _{x \rightarrow a^{+}} f(x)=\infty ?\) c. For what values of \(a,\) if any, does \(\lim _{x \rightarrow a^{+}} f(x)=-\infty ?\)
a. Evaluate \(\lim _{x \rightarrow \infty} f(x)\) and \(\lim _{x \rightarrow-\infty} f(x),\) and then identify any horizontal asymptotes. b. Find the vertical asymptotes. For each vertical asymptote \(x=a\), evaluate \(\lim _{x \rightarrow a^{-}} f(x)\) and \(\lim _{x \rightarrow a^{+}} f(x)\). $$f(x)=\frac{\sqrt{x^{2}+2 x+6}-3}{x-1}$$
Find the vertical and horizontal asymptotes of \(f(x)=e^{1 / x}\).
Limit of the radius of a cylinder A right circular cylinder with a height of \(10 \mathrm{cm}\) and a surface area of \(S \mathrm{cm}^{2}\) has a radius given by $$r(S)=\frac{1}{2}(\sqrt{100+\frac{2 S}{\pi}}-10)$$ Find \(\lim _{S \rightarrow 0^{+}} r(S)\) and interpret your result.
If a function \(f\) represents a system that varies in time, the existence of \(\lim _{t \rightarrow \infty} f(t)\) means that the system reaches a steady state (or equilibrium). For the following systems, determine if a steady state exists and give the steady-state value. The population of a colony of squirrels is given by \(p(t)=\frac{1500}{3+2 e^{-0.1 t}}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.