Chapter 14: Problem 64
Triangle medians A triangular region has a base that connects the vertices (0,0) and \((b, 0),\) and a third vertex at \((a, h),\) where \(a > 0, b > 0,\) and \(h > 0\) a. Show that the centroid of the triangle is \(\left(\frac{a+b}{3}, \frac{h}{3}\right)\) b. Note that the three medians of a triangle extend from each vertex to the midpoint of the opposite side. Knowing that the medians of a triangle intersect in a point \(M\) and that each median bisects the triangle, conclude that the centroid of the triangle is \(M\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.