Chapter 14: Problem 63
A cylindrical soda can has a radius of \(4 \mathrm{cm}\) and a height of \(12 \mathrm{cm} .\) When the can is full of soda, the center of mass of the contents of the can is \(6 \mathrm{cm}\) above the base on the axis of the can (halfway along the axis of the can). As the can is drained, the center of mass descends for a while. However, when the can is empty (filled only with air), the center of mass is once again \(6 \mathrm{cm}\) above the base on the axis of the can. Find the depth of soda in the can for which the center of mass is at its lowest point. Neglect the mass of the can, and assume the density of the soda is \(1 \mathrm{g} / \mathrm{cm}^{3}\) and the density of air is \(0.001 \mathrm{g} / \mathrm{cm}^{3}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.