Chapter 14: Problem 55
Let \(D\) be the region bounded by the ellipsoid \(x^{2} / a^{2}+y^{2} / b^{2}+z^{2} / c^{2}=1,\) where \(a > 0, b > 0\) and \(c>0\) are real numbers. Let \(T\) be the transformation \(x=a u, y=b v, z=c w\). Find the center of mass of the upper half of \(D(z \geq 0)\) assuming it has a constant density.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.