Chapter 13: Problem 90
Find the points (if they exist) at which the following planes and curves intersect. $$y=2 x+1 ; \quad \mathbf{r}(t)=\langle 10 \cos t, 2 \sin t, 1\rangle, \text { for } 0 \leq t \leq 2 \pi$$
Chapter 13: Problem 90
Find the points (if they exist) at which the following planes and curves intersect. $$y=2 x+1 ; \quad \mathbf{r}(t)=\langle 10 \cos t, 2 \sin t, 1\rangle, \text { for } 0 \leq t \leq 2 \pi$$
All the tools & learning materials you need for study success - in one app.
Get started for freeUse the method of your choice to ate the following limits. $$\lim _{(x, y) \rightarrow(1,1)} \frac{x^{2}+x y-2 y^{2}}{2 x^{2}-x y-y^{2}}$$
Absolute maximum and minimum values Find the absolute maximum and minimum values of the following functions over the given regions \(R\). Use Lagrange multipliers to check for extreme points on the boundary. $$f(x, y)=x^{2}+4 y^{2}+1 ; R=\left\\{(x, y): x^{2}+4 y^{2} \leq 1\right\\}$$
Find the dimensions of the rectangular box with maximum volume in the first octant with one vertex at the origin and the opposite vertex on the ellipsoid \(36 x^{2}+4 y^{2}+9 z^{2}=36\).
Determine whether the following statements are true and give an explanation or counterexample. a. The plane passing through the point (1,1,1) with a normal vector \(\mathbf{n}=\langle 1,2,-3\rangle\) is the same as the plane passing through the point (3,0,1) with a normal vector \(\mathbf{n}=\langle-2,-4,6\rangle\) b. The equations \(x+y-z=1\) and \(-x-y+z=1\) describe the same plane. c. Given a plane \(Q\), there is exactly one plane orthogonal to \(Q\). d. Given a line \(\ell\) and a point \(P_{0}\) not on \(\ell\), there is exactly one plane that contains \(\ell\) and passes through \(P_{0}\) e. Given a plane \(R\) and a point \(P_{0},\) there is exactly one plane that is orthogonal to \(R\) and passes through \(P_{0}\) f. Any two distinct lines in \(\mathbb{R}^{3}\) determine a unique plane. g. If plane \(Q\) is orthogonal to plane \(R\) and plane \(R\) is orthogonal to plane \(S\), then plane \(Q\) is orthogonal to plane \(S\).
Show that $$\lim _{(x, y) \rightarrow(0,0)} \frac{a x^{2(p-n)} y^{n}}{b x^{2 p}+c y^{p}} \text { does }$$ not exist when \(a, b,\) and \(c\) are nonzero real numbers and \(n\) and \(p\) are positive integers with \(p \geq n\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.