Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Identify and briefly describe the surfaces defined by the following equations. $$x^{2}+4 y^{2}=1$$

Short Answer

Expert verified
Answer: The given equation represents a horizontal ellipse, centered at the origin (0, 0), with a semi-major axis of length 1 along the x-axis and a semi-minor axis of length 1/2 along the y-axis.

Step by step solution

01

Identify the Type of Surface

The surface is defined by the equation $$x^2 + 4y^2 = 1.$$ Since there is no z component and the sum of x and y terms involves squares, the equation represents an ellipsoid.
02

Recognize an Ellipse

If we set \(z = 0\) (the constant plane), the equation becomes $$x^2 + 4y^2 = 1$$ This equation represents an ellipse in the \(xy\)-plane, with the center at the origin \((0, 0)\).
03

Determine the Axis Lengths

In general, an ellipse has the equation \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\). By comparing the given equation to the general equation, we can identify the values of \(a^2\) and \(b^2\). In our case, \(a^2 = 1\) and \(b^2 = \frac{1}{4}\). Therefore, the semi-major and semi-minor axis lengths are: \(a = 1\) and \(b = \frac{1}{2}\).
04

Describe the Surface

The surface defined by the equation $$x^2 + 4y^2 = 1$$ is a horizontal ellipse, centered at the origin \((0, 0)\), with a semi-major axis of length 1 along the x-axis and a semi-minor axis of length \(\frac{1}{2}\) along the y-axis.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider the following equations of quadric surfaces. a. Find the intercepts with the three coordinate axes, when they exist. b. Find the equations of the \(x y-, x z^{-}\), and \(y z\) -traces, when they exist. c. Sketch a graph of the surface. $$-\frac{x^{2}}{3}+3 y^{2}-\frac{z^{2}}{12}=1$$

Consider the following functions \(f.\) a. Is \(f\) continuous at (0,0)\(?\) b. Is \(f\) differentiable at (0,0)\(?\) c. If possible, evaluate \(f_{x}(0,0)\) and \(f_{y}(0,0)\) d. Determine whether \(f_{x}\) and \(f_{y}\) are continuous at \((0,0).\) e. Explain why Theorems 5 and 6 are consistent with the results in parts \((a)-(d).\) $$f(x, y)=\sqrt{|x y|}$$

Absolute maximum and minimum values Find the absolute maximum and minimum values of the following functions over the given regions \(R\). Use Lagrange multipliers to check for extreme points on the boundary. $$f(x, y)=x^{2}+4 y^{2}+1 ; R=\left\\{(x, y): x^{2}+4 y^{2} \leq 1\right\\}$$

Find the dimensions of the rectangular box with maximum volume in the first octant with one vertex at the origin and the opposite vertex on the ellipsoid \(36 x^{2}+4 y^{2}+9 z^{2}=36\).

Suppose \(n\) houses are located at the distinct points \(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right) .\) A power substation must be located at a point such that the sum of the squares of the distances between the houses and the substation is minimized. a. Find the optimal location of the substation in the case that \(n=3\) and the houses are located at \((0,0),(2,0),\) and (1,1) b. Find the optimal location of the substation in the case that \(n=3\) and the houses are located at distinct points \(\left(x_{1}, y_{1}\right)\) \(\left(x_{2}, y_{2}\right),\) and \(\left(x_{3}, y_{3}\right)\) c. Find the optimal location of the substation in the general case of \(n\) houses located at distinct points \(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\) \(\left(x_{n}, y_{n}\right)\) d. You might argue that the locations found in parts (a), (b), and (c) are not optimal because they result from minimizing the sum of the squares of the distances, not the sum of the distances themselves. Use the locations in part (a) and write the function that gives the sum of the distances. Note that minimizing this function is much more difficult than in part (a). Then use a graphing utility to determine whether the optimal location is the same in the two cases. (Also see Exercise 75 about Steiner's problem.)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free