Chapter 13: Problem 84
Identify and briefly describe the surfaces defined by the following equations. $$x^{2}+y^{2}+4 z^{2}+2 x=0$$
Chapter 13: Problem 84
Identify and briefly describe the surfaces defined by the following equations. $$x^{2}+y^{2}+4 z^{2}+2 x=0$$
All the tools & learning materials you need for study success - in one app.
Get started for freeIdentify and briefly describe the surfaces defined by the following equations. $$x^{2} / 4+y^{2}-2 x-10 y-z^{2}+41=0$$
Let \(h\) be continuous for all real numbers. a. Find \(f_{x}\) and \(f_{y}\) when \(f(x, y)=\int_{x}^{y} h(s) d s\) b. Find \(f_{x}\) and \(f_{y}\) when \(f(x, y)=\int_{1}^{x y} h(s) d s\)
Identify and briefly describe the surfaces defined by the following equations. $$9 x^{2}+y^{2}-4 z^{2}+2 y=0$$
Problems with two constraints Given a differentiable function \(w=f(x, y, z),\) the goal is to find its maximum and minimum values subject to the constraints \(g(x, y, z)=0\) and \(h(x, y, z)=0\) where \(g\) and \(h\) are also differentiable. a. Imagine a level surface of the function \(f\) and the constraint surfaces \(g(x, y, z)=0\) and \(h(x, y, z)=0 .\) Note that \(g\) and \(h\) intersect (in general) in a curve \(C\) on which maximum and minimum values of \(f\) must be found. Explain why \(\nabla g\) and \(\nabla h\) are orthogonal to their respective surfaces. b. Explain why \(\nabla f\) lies in the plane formed by \(\nabla g\) and \(\nabla h\) at a point of \(C\) where \(f\) has a maximum or minimum value. c. Explain why part (b) implies that \(\nabla f=\lambda \nabla g+\mu \nabla h\) at a point of \(C\) where \(f\) has a maximum or minimum value, where \(\lambda\) and \(\mu\) (the Lagrange multipliers) are real numbers. d. Conclude from part (c) that the equations that must be solved for maximum or minimum values of \(f\) subject to two constraints are \(\nabla f=\lambda \nabla g+\mu \nabla h, g(x, y, z)=0,\) and \(h(x, y, z)=0\)
Use the definition of differentiability to prove that the following functions are differentiable at \((0,0) .\) You must produce functions \(\varepsilon_{1}\) and \(\varepsilon_{2}\) with the required properties. $$f(x, y)=x+y$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.