Chapter 13: Problem 83
Identify and briefly describe the surfaces defined by the following equations. $$y=x^{2} / 6+z^{2} / 16$$
Chapter 13: Problem 83
Identify and briefly describe the surfaces defined by the following equations. $$y=x^{2} / 6+z^{2} / 16$$
All the tools & learning materials you need for study success - in one app.
Get started for freeLimits at (0,0) may be easier to evaluate by converting to polar coordinates. Remember that the same limit must be obtained as \(r \rightarrow 0\) along all paths to (0,0) Evaluate the following limits or state that they do not exist. $$\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}}{x^{2}+y^{2}}$$
Use the method of your choice to ate the following limits. $$\lim _{(x, y) \rightarrow(0,0)} \frac{|x-y|}{|x+y|}$$
Evaluate the following limits. $$a.\lim _{(x, y) \rightarrow(0,0)} \frac{\sin (x+y)}{x+y}$$ $$b.\lim _{(x, y) \rightarrow(0,0)} \frac{\sin x+\sin y}{x+y}$$
Consider the following equations of quadric surfaces. a. Find the intercepts with the three coordinate axes, when they exist. b. Find the equations of the \(x y-, x z^{-}\), and \(y z\) -traces, when they exist. c. Sketch a graph of the surface. $$1-4 x^{2}+y^{2}+\frac{z^{2}}{2}=0$$
The domain of $$f(x, y)=e^{-1 /\left(x^{2}+y^{2}\right)}$$ excludes \((0,0) .\) How should \(f\) be defined at (0,0) to make it continuous there?
What do you think about this solution?
We value your feedback to improve our textbook solutions.