Chapter 13: Problem 81
Use the definition of the gradient (in two or three dimensions), assume that \(f\) and \(g\) are differentiable functions on \(\mathbb{R}^{2}\) or \(\mathbb{R}^{3},\) and let \(c\) be a constant. Prove the following gradient rules. a. Constants Rule: \(\nabla(c f)=c \nabla f\) b. Sum Rule: \(\nabla(f+g)=\nabla f+\nabla g\) c. Product Rule: \(\nabla(f g)=(\nabla f) g+f \nabla g\) d. Quotient Rule: \(\nabla\left(\frac{f}{g}\right)=\frac{g \nabla f-f \nabla g}{g^{2}}\) e. Chain Rule: \(\nabla(f \circ g)=f^{\prime}(g) \nabla g,\) where \(f\) is a function of one variable
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.