Chapter 13: Problem 80
Prove that for the plane described by \(f(x, y)=A x+B y,\) where \(A\) and \(B\) are nonzero constants, the gradient is constant (independent of \((x, y)\) ). Interpret this result.
Chapter 13: Problem 80
Prove that for the plane described by \(f(x, y)=A x+B y,\) where \(A\) and \(B\) are nonzero constants, the gradient is constant (independent of \((x, y)\) ). Interpret this result.
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(h\) be continuous for all real numbers. a. Find \(f_{x}\) and \(f_{y}\) when \(f(x, y)=\int_{x}^{y} h(s) d s\) b. Find \(f_{x}\) and \(f_{y}\) when \(f(x, y)=\int_{1}^{x y} h(s) d s\)
Use the gradient rules of Exercise 81 to find the gradient of the following functions. $$f(x, y, z)=\sqrt{25-x^{2}-y^{2}-z^{2}}$$
Production functions Economists model the output of manufacturing systems using production functions that have many of the same properties as utility functions. The family of Cobb-Douglas production functions has the form \(P=f(K, L)=C K^{a} L^{1-a},\) where K represents capital, L represents labor, and C and a are positive real numbers with \(0
Identify and briefly describe the surfaces defined by the following equations. $$9 x^{2}+y^{2}-4 z^{2}+2 y=0$$
Identify and briefly describe the surfaces defined by the following equations. $$y=x^{2} / 6+z^{2} / 16$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.