Chapter 13: Problem 80
Evaluate the following limits. $$\lim _{(x, y) \rightarrow(0, \pi / 2)} \frac{1-\cos x y}{4 x^{2} y^{3}}$$
Chapter 13: Problem 80
Evaluate the following limits. $$\lim _{(x, y) \rightarrow(0, \pi / 2)} \frac{1-\cos x y}{4 x^{2} y^{3}}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeUse the method of your choice to ate the following limits. $$\lim _{(x, y) \rightarrow(0,0)} \frac{|x-y|}{|x+y|}$$
Assume that \(x+y+z=1\) with \(x \geq 0\), \(y \geq 0,\) and \(z \geq 0\). a. Find the maximum and minimum values of \(\left(1+x^{2}\right)\left(1+y^{2}\right)\left(1+z^{2}\right)\) b. Find the maximum and minimum values of \((1+\sqrt{x})(1+\sqrt{y})(1+\sqrt{z})\)
Limits at (0,0) may be easier to evaluate by converting to polar coordinates. Remember that the same limit must be obtained as \(r \rightarrow 0\) along all paths to (0,0) Evaluate the following limits or state that they do not exist. $$\lim _{(x, y) \rightarrow(0,0)} \frac{(x-y)^{2}}{\left(x^{2}+y^{2}\right)^{3 / 2}}$$
Find the points (if they exist) at which the following planes and curves intersect. $$8 x+15 y+3 z=20 ; \quad \mathbf{r}(t)=\langle 1, \sqrt{t},-t\rangle, \text { for } t>0$$
Show that if \(f(x, y)=\frac{a x+b y}{c x+d y},\) where \(a, b, c,\) and \(d\) are real numbers with \(a d-b c=0,\) then \(f_{x}=f_{y}=0,\) for all \(x\) and \(y\) in the domain of \(f\). Give an explanation.
What do you think about this solution?
We value your feedback to improve our textbook solutions.