Chapter 13: Problem 79
Evaluate the following limits. $$\lim _{(x, y) \rightarrow(0,2)}(2 x y)^{x y}$$
Chapter 13: Problem 79
Evaluate the following limits. $$\lim _{(x, y) \rightarrow(0,2)}(2 x y)^{x y}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeProduction functions Economists model the output of manufacturing systems using production functions that have many of the same properties as utility functions. The family of Cobb-Douglas production functions has the form \(P=f(K, L)=C K^{a} L^{1-a},\) where K represents capital, L represents labor, and C and a are positive real numbers with \(0
Let $$f(x, y)=\left\\{\begin{array}{ll}\frac{\sin \left(x^{2}+y^{2}-1\right)}{x^{2}+y^{2}-1} & \text { if } x^{2}+y^{2} \neq 1 \\\b & \text { if } x^{2}+y^{2}=1\end{array}\right.$$ Find the value of \(b\) for which \(f\) is continuous at all points in \(\mathbb{R}^{2}\).
Find the points (if they exist) at which the following planes and curves
intersect.
$$8 x+y+z=60 ; \quad \mathbf{r}(t)=\left\langle t, t^{2}, 3
t^{2}\right\rangle, \text { for }-\infty
Let \(R\) be a closed bounded set in \(\mathbb{R}^{2}\) and let \(f(x, y)=a x+b y+c,\) where \(a, b,\) and \(c\) are real numbers, with \(a\) and \(b\) not both zero. Give a geometrical argument explaining why the absolute maximum and minimum values of \(f\) over \(R\) occur on the boundaries of \(R\)
Consider the curve \(\mathbf{r}(t)=\langle\cos t, \sin t, c \sin t\rangle,\) for \(0 \leq t \leq 2 \pi,\) where \(c\) is a real number. a. What is the equation of the plane \(P\) in which the curve lies? b. What is the angle between \(P\) and the \(x y\) -plane? c. Prove that the curve is an ellipse in \(P\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.