Chapter 13: Problem 77
Potential functions arise frequently in physics and engineering. A potential function has the property that \(a\) field of interest (for example, an electric field, a gravitational field, or a velocity field is the gradient of the potential (or sometimes the negative of the gradient of the potential). The electric field due to a point charge of strength \(Q\) at the origin has a potential function \(V=k Q / r,\) where \(r^{2}=x^{2}+y^{2}+z^{2}\) is the square of the distance between a variable point \(P(x, y, z)\) and the charge, and \(k>0\) is a physical constant. The electric field is given by \(\mathbf{E}=-\nabla V,\) where \(\nabla V\) is the gradient in three dimensions. a. Show that the three-dimensional electric field due to a point charge is given by $$ \mathbf{E}(x, y, z)=k Q\left\langle\frac{x}{r^{3}}, \frac{y}{r^{3}}, \frac{z}{r^{3}}\right\rangle $$ b. Show that the electric field at a point has a magnitude \(|\mathbf{E}|=k Q / r^{2} .\) Explain why this relationship is called an inverse square law.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.