Chapter 13: Problem 77
Evaluate the following limits. $$\lim _{(x, y) \rightarrow(1,0)} \frac{\sin x y}{x y}$$
Chapter 13: Problem 77
Evaluate the following limits. $$\lim _{(x, y) \rightarrow(1,0)} \frac{\sin x y}{x y}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the point on the surface curve \(y=x^{2}\) nearest the line \(y=x-1 .\) Identify the point on the line.
Show that the following two functions have two local maxima but no other extreme points (thus no saddle or basin between the mountains). a. \(f(x, y)=-\left(x^{2}-1\right)^{2}-\left(x^{2}-e^{y}\right)^{2}\) b. \(f(x, y)=4 x^{2} e^{y}-2 x^{4}-e^{4 y}\)
Production functions Economists model the output of manufacturing systems using production functions that have many of the same properties as utility functions. The family of Cobb-Douglas production functions has the form \(P=f(K, L)=C K^{a} L^{1-a},\) where K represents capital, L represents labor, and C and a are positive real numbers with \(0
Assume that \(x+y+z=1\) with \(x \geq 0\), \(y \geq 0,\) and \(z \geq 0\). a. Find the maximum and minimum values of \(\left(1+x^{2}\right)\left(1+y^{2}\right)\left(1+z^{2}\right)\) b. Find the maximum and minimum values of \((1+\sqrt{x})(1+\sqrt{y})(1+\sqrt{z})\)
Use the gradient rules of Exercise 81 to find the gradient of the following functions. $$f(x, y, z)=(x+y+z) e^{x y z}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.