Chapter 13: Problem 76
Find an equation of the plane passing through (0,-2,4) that is orthogonal to the planes \(2 x+5 y-3 z=0\) and \(-x+5 y+2 z=8\)
Chapter 13: Problem 76
Find an equation of the plane passing through (0,-2,4) that is orthogonal to the planes \(2 x+5 y-3 z=0\) and \(-x+5 y+2 z=8\)
All the tools & learning materials you need for study success - in one app.
Get started for freeA clothing company makes a profit of \(\$ 10\) on its long-sleeved T-shirts and \(\$ 5\) on its short-sleeved T-shirts. Assuming there is a \(\$ 200\) setup cost, the profit on \(\mathrm{T}\) -shirt sales is \(z=10 x+5 y-200,\) where \(x\) is the number of long-sleeved T-shirts sold and \(y\) is the number of short-sleeved T-shirts sold. Assume \(x\) and \(y\) are nonnegative. a. Graph the plane that gives the profit using the window $$ [0,40] \times[0,40] \times[-400,400] $$ b. If \(x=20\) and \(y=10,\) is the profit positive or negative? c. Describe the values of \(x\) and \(y\) for which the company breaks even (for which the profit is zero). Mark this set on your graph.
Limits at (0,0) may be easier to evaluate by converting to polar coordinates. Remember that the same limit must be obtained as \(r \rightarrow 0\) along all paths to (0,0) Evaluate the following limits or state that they do not exist. $$\lim _{(x, y) \rightarrow(0,0)} \frac{x-y}{\sqrt{x^{2}+y^{2}}}$$
Given three distinct noncollinear points \(A, B,\) and \(C\) in the plane, find the point \(P\) in the plane such that the sum of the distances \(|A P|+|B P|+|C P|\) is a minimum. Here is how to proceed with three points, assuming that the triangle formed by the three points has no angle greater than \(2 \pi / 3\left(120^{\circ}\right)\). a. Assume the coordinates of the three given points are \(A\left(x_{1}, y_{1}\right)\) \(B\left(x_{2}, y_{2}\right),\) and \(C\left(x_{3}, y_{3}\right) .\) Let \(d_{1}(x, y)\) be the distance between \(A\left(x_{1}, y_{1}\right)\) and a variable point \(P(x, y) .\) Compute the gradient of \(d_{1}\) and show that it is a unit vector pointing along the line between the two points. b. Define \(d_{2}\) and \(d_{3}\) in a similar way and show that \(\nabla d_{2}\) and \(\nabla d_{3}\) are also unit vectors in the direction of the line between the two points. c. The goal is to minimize \(f(x, y)=d_{1}+d_{2}+d_{3}\) Show that the condition \(f_{x}=f_{y}=0\) implies that \(\nabla d_{1}+\nabla d_{2}+\nabla d_{3}=0\). d. Explain why part (c) implies that the optimal point \(P\) has the property that the three line segments \(A P, B P,\) and \(C P\) all intersect symmetrically in angles of \(2 \pi / 3\). e. What is the optimal solution if one of the angles in the triangle is greater than \(2 \pi / 3\) (just draw a picture)? f. Estimate the Steiner point for the three points (0,0),(0,1) and (2,0)
Use the method of your choice to ate the following limits. $$\lim _{(x, y) \rightarrow(2,0)} \frac{1-\cos y}{x y^{2}}$$
Identify and briefly describe the surfaces defined by the following equations. $$x^{2}+y^{2}+4 z^{2}+2 x=0$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.