Chapter 13: Problem 75
Traveling waves (for example, water waves or electromagnetic waves) exhibit periodic motion in both time and position. In one dimension (for example, a wave on a string) wave motion is governed by the one-dimensional wave equation $$\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}},$$ where \(u(x, t)\) is the height or displacement of the wave surface at position \(x\) and time \(t,\) and \(c\) is the constant speed of the wave. Show that the following functions are solutions of the wave equation. \(u(x, t)=A f(x+c t)+B g(x-c t),\) where \(A\) and \(B\) are constants and \(f\) and \(g\) are twice differentiable functions of one variable
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.