Chapter 13: Problem 75
Given three distinct noncollinear points \(A, B,\) and \(C\) in the plane, find the point \(P\) in the plane such that the sum of the distances \(|A P|+|B P|+|C P|\) is a minimum. Here is how to proceed with three points, assuming that the triangle formed by the three points has no angle greater than \(2 \pi / 3\left(120^{\circ}\right)\). a. Assume the coordinates of the three given points are \(A\left(x_{1}, y_{1}\right)\) \(B\left(x_{2}, y_{2}\right),\) and \(C\left(x_{3}, y_{3}\right) .\) Let \(d_{1}(x, y)\) be the distance between \(A\left(x_{1}, y_{1}\right)\) and a variable point \(P(x, y) .\) Compute the gradient of \(d_{1}\) and show that it is a unit vector pointing along the line between the two points. b. Define \(d_{2}\) and \(d_{3}\) in a similar way and show that \(\nabla d_{2}\) and \(\nabla d_{3}\) are also unit vectors in the direction of the line between the two points. c. The goal is to minimize \(f(x, y)=d_{1}+d_{2}+d_{3}\) Show that the condition \(f_{x}=f_{y}=0\) implies that \(\nabla d_{1}+\nabla d_{2}+\nabla d_{3}=0\). d. Explain why part (c) implies that the optimal point \(P\) has the property that the three line segments \(A P, B P,\) and \(C P\) all intersect symmetrically in angles of \(2 \pi / 3\). e. What is the optimal solution if one of the angles in the triangle is greater than \(2 \pi / 3\) (just draw a picture)? f. Estimate the Steiner point for the three points (0,0),(0,1) and (2,0)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.