Chapter 13: Problem 73
Ideal Gas Law Many gases can be modeled by the Ideal Gas Law, \(P V=n R T,\) which relates the temperature \((T,\) measured in Kelvin (K)), pressure ( \(P\), measured in Pascals (Pa)), and volume ( \(V\), measured in \(\mathrm{m}^{3}\) ) of a gas. Assume that the quantity of gas in question is \(n=1\) mole (mol). The gas constant has a value of \(R=8.3 \mathrm{m}^{3} \cdot \mathrm{Pa} / \mathrm{mol} \cdot \mathrm{K}.\) a. Consider \(T\) to be the dependent variable and plot several level curves (called isotherms) of the temperature surface in the region \(0 \leq P \leq 100,000\) and \(0 \leq V \leq 0.5.\) b. Consider \(P\) to be the dependent variable and plot several level curves (called isobars) of the pressure surface in the region \(0 \leq T \leq 900\) and \(0< V \leq 0.5.\) c. Consider \(V\) to be the dependent variable and plot several level curves of the volume surface in the region \(0 \leq T \leq 900\) and \(0 < P \leq 100,000.\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.