Chapter 13: Problem 65
Prove that the level curves of the plane \(a x+b y+c z=d\) are parallel lines in the \(x y\) -plane, provided \(a^{2}+b^{2} \neq 0\) and \(c \neq 0.\)
Chapter 13: Problem 65
Prove that the level curves of the plane \(a x+b y+c z=d\) are parallel lines in the \(x y\) -plane, provided \(a^{2}+b^{2} \neq 0\) and \(c \neq 0.\)
All the tools & learning materials you need for study success - in one app.
Get started for freeUse the definition of differentiability to prove that the following functions are differentiable at \((0,0) .\) You must produce functions \(\varepsilon_{1}\) and \(\varepsilon_{2}\) with the required properties. $$f(x, y)=x y$$
Use the method of your choice to ate the following limits. $$\lim _{(x, y) \rightarrow(-1,0)} \frac{x y e^{-y}}{x^{2}+y^{2}}$$
Production functions Economists model the output of manufacturing systems using production functions that have many of the same properties as utility functions. The family of Cobb-Douglas production functions has the form \(P=f(K, L)=C K^{a} L^{1-a},\) where K represents capital, L represents labor, and C and a are positive real numbers with \(0
Absolute maximum and minimum values Find the absolute maximum and minimum values of the following functions over the given regions \(R\). Use Lagrange multipliers to check for extreme points on the boundary. $$f(x, y)=x^{2}+4 y^{2}+1 ; R=\left\\{(x, y): x^{2}+4 y^{2} \leq 1\right\\}$$
Match equations a-f with surfaces A-F. a. \(y-z^{2}=0\) b. \(2 x+3 y-z=5\) c. \(4 x^{2}+\frac{y^{2}}{9}+z^{2}=1\) d. \(x^{2}+\frac{y^{2}}{9}-z^{2}=1\) e. \(x^{2}+\frac{y^{2}}{9}=z^{2}\) f. \(y=|x|\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.