Chapter 13: Problem 65
An important derivative operation in many applications is called the Laplacian; in Cartesian coordinates, for \(z=f(x, y),\) the Laplacian is \(z_{x x}+z_{y y} .\) Determine the Laplacian in polar coordinates using the following steps. a. Begin with \(z=g(r, \theta)\) and write \(z_{x}\) and \(z_{y}\) in terms of polar coordinates (see Exercise 64). b. Use the Chain Rule to find \(z_{x x}=\frac{\partial}{\partial x}\left(z_{x}\right) .\) There should be two major terms, which, when expanded and simplified, result in five terms. c. Use the Chain Rule to find \(z_{y y}=\frac{\partial}{\partial y}\left(z_{y}\right) .\) There should be two major terms, which, when expanded and simplified, result in five terms. d. Combine parts (b) and (c) to show that $$ z_{x x}+z_{y y}=z_{r r}+\frac{1}{r} z_{r}+\frac{1}{r^{2}} z_{\theta \theta}. $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.