Chapter 13: Problem 62
Find the dimensions of the rectangular box with maximum volume in the first octant with one vertex at the origin and the opposite vertex on the ellipsoid \(36 x^{2}+4 y^{2}+9 z^{2}=36\).
Chapter 13: Problem 62
Find the dimensions of the rectangular box with maximum volume in the first octant with one vertex at the origin and the opposite vertex on the ellipsoid \(36 x^{2}+4 y^{2}+9 z^{2}=36\).
All the tools & learning materials you need for study success - in one app.
Get started for freeAbsolute maximum and minimum values Find the absolute maximum and minimum values of the following functions over the given regions \(R\). Use Lagrange multipliers to check for extreme points on the boundary. $$f(x, y)=2 x^{2}+y^{2}+2 x-3 y ; R=\left\\{(x, y): x^{2}+y^{2} \leq 1\right\\}$$
Evaluate the following limits. $$\lim _{(x, y) \rightarrow(1,0)} \frac{\sin x y}{x y}$$
Among all triangles with a perimeter of 9 units, find the dimensions of the triangle with the maximum area. It may be easiest to use Heron's formula, which states that the area of a triangle with side length \(a, b,\) and \(c\) is \(A=\sqrt{s(s-a)(s-b)(s-c)},\) where \(2 s\) is the perimeter of the triangle.
Use the definition of the gradient (in two or three dimensions), assume that \(f\) and \(g\) are differentiable functions on \(\mathbb{R}^{2}\) or \(\mathbb{R}^{3},\) and let \(c\) be a constant. Prove the following gradient rules. a. Constants Rule: \(\nabla(c f)=c \nabla f\) b. Sum Rule: \(\nabla(f+g)=\nabla f+\nabla g\) c. Product Rule: \(\nabla(f g)=(\nabla f) g+f \nabla g\) d. Quotient Rule: \(\nabla\left(\frac{f}{g}\right)=\frac{g \nabla f-f \nabla g}{g^{2}}\) e. Chain Rule: \(\nabla(f \circ g)=f^{\prime}(g) \nabla g,\) where \(f\) is a function of one variable
Use the formal definition of a limit to prove that $$\lim _{(x, y) \rightarrow(a, b)}(x+y)=a+b . \text { (Hint: Take } \delta=\varepsilon / 2 \text { ) }$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.