Chapter 13: Problem 58
Evaluate the following limits. $$\lim _{(x, y, z) \rightarrow(1,-1,1)} \frac{x z+5 x+y z+5 y}{x+y}$$
Chapter 13: Problem 58
Evaluate the following limits. $$\lim _{(x, y, z) \rightarrow(1,-1,1)} \frac{x z+5 x+y z+5 y}{x+y}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(E\) be the ellipsoid \(x^{2} / 9+y^{2} / 4+z^{2}=1, P\) be the plane \(z=A x+B y,\) and \(C\) be the intersection of \(E\) and \(P\). a. Is \(C\) an ellipse for all values of \(A\) and \(B\) ? Explain. b. Sketch and interpret the situation in which \(A=0\) and \(B \neq 0\). c. Find an equation of the projection of \(C\) on the \(x y\) -plane. d. Assume \(A=\frac{1}{6}\) and \(B=\frac{1}{2} .\) Find a parametric description of \(C\) as a curve in \(\mathbb{R}^{3}\). (Hint: Assume \(C\) is described by \(\langle a \cos t+b \sin t, c \cos t+d \sin t, e \cos t+f \sin t\rangle\) and find \(a, b, c, d, e, \text { and } f .)\)
Limits at (0,0) may be easier to evaluate by converting to polar coordinates. Remember that the same limit must be obtained as \(r \rightarrow 0\) along all paths to (0,0) Evaluate the following limits or state that they do not exist. $$\lim _{(x, y) \rightarrow(0,0)} \frac{(x-y)^{2}}{x^{2}+x y+y^{2}}$$
Among all triangles with a perimeter of 9 units, find the dimensions of the triangle with the maximum area. It may be easiest to use Heron's formula, which states that the area of a triangle with side length \(a, b,\) and \(c\) is \(A=\sqrt{s(s-a)(s-b)(s-c)},\) where \(2 s\) is the perimeter of the triangle.
A function of one variable has the property that a local maximum (or minimum) occurring at the only critical point is also the absolute maximum (or minimum) (for example, \(f(x)=x^{2}\) ). Does the same result hold for a function of two variables? Show that the following functions have the property that they have a single local maximum (or minimum), occurring at the only critical point, but that the local maximum (or minimum) is not an absolute maximum (or minimum) on \(\mathbb{R}^{2}\). a. \(f(x, y)=3 x e^{y}-x^{3}-e^{3 y}\) b. \(f(x, y)=\left(2 y^{2}-y^{4}\right)\left(e^{x}+\frac{1}{1+x^{2}}\right)-\frac{1}{1+x^{2}}\) This property has the following interpretation. Suppose that a surface has a single local minimum that is not the absolute minimum. Then water can be poured into the basin around the local minimum and the surface never overflows, even though there are points on the surface below the local minimum.
The angle between two planes is the angle \(\theta\) between the normal vectors of the planes, where the directions of the normal vectors are chosen so that \(0 \leq \theta<\pi\) Find the angle between the planes \(5 x+2 y-z=0\) and \(-3 x+y+2 z=0\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.