Chapter 13: Problem 56
Line tangent to an intersection curve Consider the paraboloid \(z=x^{2}+3 y^{2}\) and the plane \(z=x+y+4,\) which intersects the paraboloid in a curve \(C\) at (2,1,7) (see figure). Find the equation of the line tangent to \(C\) at the point \((2,1,7) .\) Proceed as follows. a. Find a vector normal to the plane at (2,1,7) b. Find a vector normal to the plane tangent to the paraboloid at (2,1,7) c. Argue that the line tangent to \(C\) at (2,1,7) is orthogonal to both normal vectors found in parts (a) and (b). Use this fact to find a direction vector for the tangent line. d. Knowing a point on the tangent line and the direction of the tangent line, write an equation of the tangent line in parametric form.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.