Chapter 13: Problem 54
Evaluate the following limits. $$\lim _{(x, y, z) \rightarrow(0,1,0)} \ln e^{x z}(1+y)$$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 13: Problem 54
Evaluate the following limits. $$\lim _{(x, y, z) \rightarrow(0,1,0)} \ln e^{x z}(1+y)$$
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(x, y,\) and \(z\) be nonnegative numbers with \(x+y+z=200\). a. Find the values of \(x, y,\) and \(z\) that minimize \(x^{2}+y^{2}+z^{2}\). b. Find the values of \(x, y,\) and \(z\) that minimize \(\sqrt{x^{2}+y^{2}+z^{2}}\). c. Find the values of \(x, y,\) and \(z\) that maximize \(x y z\). d. Find the values of \(x, y,\) and \(z\) that maximize \(x^{2} y^{2} z^{2}\).
Problems with two constraints Given a differentiable function \(w=f(x, y, z),\) the goal is to find its maximum and minimum values subject to the constraints \(g(x, y, z)=0\) and \(h(x, y, z)=0\) where \(g\) and \(h\) are also differentiable. a. Imagine a level surface of the function \(f\) and the constraint surfaces \(g(x, y, z)=0\) and \(h(x, y, z)=0 .\) Note that \(g\) and \(h\) intersect (in general) in a curve \(C\) on which maximum and minimum values of \(f\) must be found. Explain why \(\nabla g\) and \(\nabla h\) are orthogonal to their respective surfaces. b. Explain why \(\nabla f\) lies in the plane formed by \(\nabla g\) and \(\nabla h\) at a point of \(C\) where \(f\) has a maximum or minimum value. c. Explain why part (b) implies that \(\nabla f=\lambda \nabla g+\mu \nabla h\) at a point of \(C\) where \(f\) has a maximum or minimum value, where \(\lambda\) and \(\mu\) (the Lagrange multipliers) are real numbers. d. Conclude from part (c) that the equations that must be solved for maximum or minimum values of \(f\) subject to two constraints are \(\nabla f=\lambda \nabla g+\mu \nabla h, g(x, y, z)=0,\) and \(h(x, y, z)=0\)
Use the definition of the gradient (in two or three dimensions), assume that \(f\) and \(g\) are differentiable functions on \(\mathbb{R}^{2}\) or \(\mathbb{R}^{3},\) and let \(c\) be a constant. Prove the following gradient rules. a. Constants Rule: \(\nabla(c f)=c \nabla f\) b. Sum Rule: \(\nabla(f+g)=\nabla f+\nabla g\) c. Product Rule: \(\nabla(f g)=(\nabla f) g+f \nabla g\) d. Quotient Rule: \(\nabla\left(\frac{f}{g}\right)=\frac{g \nabla f-f \nabla g}{g^{2}}\) e. Chain Rule: \(\nabla(f \circ g)=f^{\prime}(g) \nabla g,\) where \(f\) is a function of one variable
Given three distinct noncollinear points \(A, B,\) and \(C\) in the plane, find the point \(P\) in the plane such that the sum of the distances \(|A P|+|B P|+|C P|\) is a minimum. Here is how to proceed with three points, assuming that the triangle formed by the three points has no angle greater than \(2 \pi / 3\left(120^{\circ}\right)\). a. Assume the coordinates of the three given points are \(A\left(x_{1}, y_{1}\right)\) \(B\left(x_{2}, y_{2}\right),\) and \(C\left(x_{3}, y_{3}\right) .\) Let \(d_{1}(x, y)\) be the distance between \(A\left(x_{1}, y_{1}\right)\) and a variable point \(P(x, y) .\) Compute the gradient of \(d_{1}\) and show that it is a unit vector pointing along the line between the two points. b. Define \(d_{2}\) and \(d_{3}\) in a similar way and show that \(\nabla d_{2}\) and \(\nabla d_{3}\) are also unit vectors in the direction of the line between the two points. c. The goal is to minimize \(f(x, y)=d_{1}+d_{2}+d_{3}\) Show that the condition \(f_{x}=f_{y}=0\) implies that \(\nabla d_{1}+\nabla d_{2}+\nabla d_{3}=0\). d. Explain why part (c) implies that the optimal point \(P\) has the property that the three line segments \(A P, B P,\) and \(C P\) all intersect symmetrically in angles of \(2 \pi / 3\). e. What is the optimal solution if one of the angles in the triangle is greater than \(2 \pi / 3\) (just draw a picture)? f. Estimate the Steiner point for the three points (0,0),(0,1) and (2,0)
What point on the plane \(x-y+z=2\) is closest to the point (1,1,1)\(?\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.