Chapter 13: Problem 53
Find the points at which the following surfaces have horizontal tangent planes. $$z=\cos 2 x \sin y \text { in the region }-\pi \leq x \leq \pi,-\pi \leq y \leq \pi$$
Chapter 13: Problem 53
Find the points at which the following surfaces have horizontal tangent planes. $$z=\cos 2 x \sin y \text { in the region }-\pi \leq x \leq \pi,-\pi \leq y \leq \pi$$
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(h\) be continuous for all real numbers. a. Find \(f_{x}\) and \(f_{y}\) when \(f(x, y)=\int_{x}^{y} h(s) d s\) b. Find \(f_{x}\) and \(f_{y}\) when \(f(x, y)=\int_{1}^{x y} h(s) d s\)
Problems with two constraints Given a differentiable function \(w=f(x, y, z),\) the goal is to find its maximum and minimum values subject to the constraints \(g(x, y, z)=0\) and \(h(x, y, z)=0\) where \(g\) and \(h\) are also differentiable. a. Imagine a level surface of the function \(f\) and the constraint surfaces \(g(x, y, z)=0\) and \(h(x, y, z)=0 .\) Note that \(g\) and \(h\) intersect (in general) in a curve \(C\) on which maximum and minimum values of \(f\) must be found. Explain why \(\nabla g\) and \(\nabla h\) are orthogonal to their respective surfaces. b. Explain why \(\nabla f\) lies in the plane formed by \(\nabla g\) and \(\nabla h\) at a point of \(C\) where \(f\) has a maximum or minimum value. c. Explain why part (b) implies that \(\nabla f=\lambda \nabla g+\mu \nabla h\) at a point of \(C\) where \(f\) has a maximum or minimum value, where \(\lambda\) and \(\mu\) (the Lagrange multipliers) are real numbers. d. Conclude from part (c) that the equations that must be solved for maximum or minimum values of \(f\) subject to two constraints are \(\nabla f=\lambda \nabla g+\mu \nabla h, g(x, y, z)=0,\) and \(h(x, y, z)=0\)
Consider the following equations of quadric surfaces. a. Find the intercepts with the three coordinate axes, when they exist. b. Find the equations of the \(x y-, x z^{-}\), and \(y z\) -traces, when they exist. c. Sketch a graph of the surface. $$-x^{2}+\frac{y^{2}}{4}-\frac{z^{2}}{9}=1$$
Use the method of your choice to ate the following limits. $$\lim _{(x, y) \rightarrow(-1,0)} \frac{x y e^{-y}}{x^{2}+y^{2}}$$
Use the formal definition of a limit to prove that $$\lim _{(x, y) \rightarrow(a, b)} y=b .(\text {Hint}: \text { Take } \delta=\varepsilon$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.