Chapter 13: Problem 52
Find the points at which the following surfaces have horizontal tangent planes. $$x^{2}+2 y^{2}+z^{2}-2 x-2 z-2=0$$
Chapter 13: Problem 52
Find the points at which the following surfaces have horizontal tangent planes. $$x^{2}+2 y^{2}+z^{2}-2 x-2 z-2=0$$
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider the ellipse \(x^{2}+4 y^{2}=1\) in the \(x y\) -plane. a. If this ellipse is revolved about the \(x\) -axis, what is the equation of the resulting ellipsoid? b. If this ellipse is revolved about the \(y\) -axis, what is the equation of the resulting ellipsoid?
Use the formal definition of a limit to prove that $$\lim _{(x, y) \rightarrow(a, b)} c f(x, y)=c \lim _{(x, y) \rightarrow(a, b)} f(x, y)$$
Evaluate the following limits. $$\lim _{(x, y) \rightarrow(0,2)}(2 x y)^{x y}$$
Identify and briefly describe the surfaces defined by the following equations. $$-y^{2}-9 z^{2}+x^{2} / 4=1$$
Let \(w=f(x, y, z)=2 x+3 y+4 z\), which is defined for all \((x, y, z)\) in \(\mathbb{R}^{3}\). Suppose that we are interested in the partial derivative \(w_{x}\) on a subset of \(\mathbb{R}^{3}\), such as the plane \(P\) given by \(z=4 x-2 y .\) The point to be made is that the result is not unique unless we specify which variables are considered independent. a. We could proceed as follows. On the plane \(P\), consider \(x\) and \(y\) as the independent variables, which means \(z\) depends on \(x\) and \(y,\) so we write \(w=f(x, y, z(x, y)) .\) Differentiate with respect to \(x\) holding \(y\) fixed to show that \(\left(\frac{\partial w}{\partial x}\right)_{y}=18,\) where the subscript \(y\) indicates that \(y\) is held fixed. b. Alternatively, on the plane \(P,\) we could consider \(x\) and \(z\) as the independent variables, which means \(y\) depends on \(x\) and \(z,\) so we write \(w=f(x, y(x, z), z)\) and differentiate with respect to \(x\) holding \(z\) fixed. Show that \(\left(\frac{\partial w}{\partial x}\right)_{z}=8,\) where the subscript \(z\) indicates that \(z\) is held fixed. c. Make a sketch of the plane \(z=4 x-2 y\) and interpret the results of parts (a) and (b) geometrically. d. Repeat the arguments of parts (a) and (b) to find \(\left(\frac{\partial w}{\partial y}\right)_{x}\), \(\left(\frac{\partial w}{\partial y}\right)_{z},\left(\frac{\partial w}{\partial z}\right)_{x},\) and \(\left(\frac{\partial w}{\partial z}\right)_{y}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.