Chapter 13: Problem 49
Find the first partial derivatives of the following functions. $$h(w, x, y, z)=\frac{w z}{x y}$$
Chapter 13: Problem 49
Find the first partial derivatives of the following functions. $$h(w, x, y, z)=\frac{w z}{x y}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the domains of the following functions. Specify the domain mathematically and then describe it in words or with a sketch. $$g(x, y, z)=\frac{10}{x^{2}-(y+z) x+y z}.$$
Let \(E\) be the ellipsoid \(x^{2} / 9+y^{2} / 4+z^{2}=1, P\) be the plane \(z=A x+B y,\) and \(C\) be the intersection of \(E\) and \(P\). a. Is \(C\) an ellipse for all values of \(A\) and \(B\) ? Explain. b. Sketch and interpret the situation in which \(A=0\) and \(B \neq 0\). c. Find an equation of the projection of \(C\) on the \(x y\) -plane. d. Assume \(A=\frac{1}{6}\) and \(B=\frac{1}{2} .\) Find a parametric description of \(C\) as a curve in \(\mathbb{R}^{3}\). (Hint: Assume \(C\) is described by \(\langle a \cos t+b \sin t, c \cos t+d \sin t, e \cos t+f \sin t\rangle\) and find \(a, b, c, d, e, \text { and } f .)\)
Consider the following equations of quadric surfaces. a. Find the intercepts with the three coordinate axes, when they exist. b. Find the equations of the \(x y-, x z^{-}\), and \(y z\) -traces, when they exist. c. Sketch a graph of the surface. $$1-4 x^{2}+y^{2}+\frac{z^{2}}{2}=0$$
Find the points (if they exist) at which the following planes and curves intersect. $$\begin{aligned}&2 x+3 y-12 z=0 ; \quad \mathbf{r}(t)=\langle 4 \cos t, 4 \sin t, \cos t\rangle\\\&\text { for } 0 \leq t \leq 2 \pi\end{aligned}$$
Evaluate the following limits. $$\lim _{(x, y) \rightarrow(0,2)}(2 x y)^{x y}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.