Chapter 13: Problem 48
Find the first partial derivatives of the following functions. $$g(w, x, y, z)=\cos (w+x) \sin (y-z)$$
Chapter 13: Problem 48
Find the first partial derivatives of the following functions. $$g(w, x, y, z)=\cos (w+x) \sin (y-z)$$
All the tools & learning materials you need for study success - in one app.
Get started for freeShow that the following two functions have two local maxima but no other extreme points (thus no saddle or basin between the mountains). a. \(f(x, y)=-\left(x^{2}-1\right)^{2}-\left(x^{2}-e^{y}\right)^{2}\) b. \(f(x, y)=4 x^{2} e^{y}-2 x^{4}-e^{4 y}\)
Show that if \(f(x, y)=\frac{a x+b y}{c x+d y},\) where \(a, b, c,\) and \(d\) are real numbers with \(a d-b c=0,\) then \(f_{x}=f_{y}=0,\) for all \(x\) and \(y\) in the domain of \(f\). Give an explanation.
Limits at (0,0) may be easier to evaluate by converting to polar coordinates. Remember that the same limit must be obtained as \(r \rightarrow 0\) along all paths to (0,0) Evaluate the following limits or state that they do not exist. $$\lim _{(x, y) \rightarrow(0,0)} \frac{x-y}{\sqrt{x^{2}+y^{2}}}$$
Absolute maximum and minimum values Find the absolute maximum and minimum values of the following functions over the given regions \(R\). Use Lagrange multipliers to check for extreme points on the boundary. $$f(x, y)=x^{2}+4 y^{2}+1 ; R=\left\\{(x, y): x^{2}+4 y^{2} \leq 1\right\\}$$
a. Consider the function \(w=f(x, y, z)\). List all possible second partial derivatives that could be computed. b. Let \(f(x, y, z)=x^{2} y+2 x z^{2}-3 y^{2} z\) and determine which second partial derivatives are equal. c. How many second partial derivatives does \(p=g(w, x, y, z)\) have?
What do you think about this solution?
We value your feedback to improve our textbook solutions.