Chapter 13: Problem 47
At what points of \(\mathbb{R}^{2}\) are the following functions continuous? $$f(x, y)=\ln \left(x^{2}+y^{2}\right)$$
Chapter 13: Problem 47
At what points of \(\mathbb{R}^{2}\) are the following functions continuous? $$f(x, y)=\ln \left(x^{2}+y^{2}\right)$$
All the tools & learning materials you need for study success - in one app.
Get started for freeTemperature of an elliptical plate The temperature of points on an elliptical plate \(x^{2}+y^{2}+x y \leq 1\) is given by \(T(x,y)=25\left(x^{2}+y^{2}\right) .\) Find the hottest and coldest temperatures on the edge of the elliptical plate.
Assume that \(x+y+z=1\) with \(x \geq 0\), \(y \geq 0,\) and \(z \geq 0\). a. Find the maximum and minimum values of \(\left(1+x^{2}\right)\left(1+y^{2}\right)\left(1+z^{2}\right)\) b. Find the maximum and minimum values of \((1+\sqrt{x})(1+\sqrt{y})(1+\sqrt{z})\)
Limits at (0,0) may be easier to evaluate by converting to polar coordinates. Remember that the same limit must be obtained as \(r \rightarrow 0\) along all paths to (0,0) Evaluate the following limits or state that they do not exist. $$\lim _{(x, y) \rightarrow(0,0)} \frac{x-y}{\sqrt{x^{2}+y^{2}}}$$
Let \(w=f(x, y, z)=2 x+3 y+4 z\), which is defined for all \((x, y, z)\) in \(\mathbb{R}^{3}\). Suppose that we are interested in the partial derivative \(w_{x}\) on a subset of \(\mathbb{R}^{3}\), such as the plane \(P\) given by \(z=4 x-2 y .\) The point to be made is that the result is not unique unless we specify which variables are considered independent. a. We could proceed as follows. On the plane \(P\), consider \(x\) and \(y\) as the independent variables, which means \(z\) depends on \(x\) and \(y,\) so we write \(w=f(x, y, z(x, y)) .\) Differentiate with respect to \(x\) holding \(y\) fixed to show that \(\left(\frac{\partial w}{\partial x}\right)_{y}=18,\) where the subscript \(y\) indicates that \(y\) is held fixed. b. Alternatively, on the plane \(P,\) we could consider \(x\) and \(z\) as the independent variables, which means \(y\) depends on \(x\) and \(z,\) so we write \(w=f(x, y(x, z), z)\) and differentiate with respect to \(x\) holding \(z\) fixed. Show that \(\left(\frac{\partial w}{\partial x}\right)_{z}=8,\) where the subscript \(z\) indicates that \(z\) is held fixed. c. Make a sketch of the plane \(z=4 x-2 y\) and interpret the results of parts (a) and (b) geometrically. d. Repeat the arguments of parts (a) and (b) to find \(\left(\frac{\partial w}{\partial y}\right)_{x}\), \(\left(\frac{\partial w}{\partial y}\right)_{z},\left(\frac{\partial w}{\partial z}\right)_{x},\) and \(\left(\frac{\partial w}{\partial z}\right)_{y}\).
Absolute maximum and minimum values Find the absolute maximum and minimum values of the following functions over the given regions \(R\). Use Lagrange multipliers to check for extreme points on the boundary. $$f(x, y)=x^{2}-4 y^{2}+x y ; R=\left\\{(x, y): 4 x^{2}+9 y^{2} \leq 36\right\\}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.