Chapter 13: Problem 46
Find the first partial derivatives of the following functions. $$G(r, s, t)=\sqrt{r s+r t+s t}$$
Chapter 13: Problem 46
Find the first partial derivatives of the following functions. $$G(r, s, t)=\sqrt{r s+r t+s t}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeWhat point on the plane \(x-y+z=2\) is closest to the point (1,1,1)\(?\)
Consider the curve \(\mathbf{r}(t)=\langle\cos t, \sin t, c \sin t\rangle,\) for \(0 \leq t \leq 2 \pi,\) where \(c\) is a real number. a. What is the equation of the plane \(P\) in which the curve lies? b. What is the angle between \(P\) and the \(x y\) -plane? c. Prove that the curve is an ellipse in \(P\).
Use the method of your choice to ate the following limits. $$\lim _{(x, y) \rightarrow(0,0)} \frac{|x-y|}{|x+y|}$$
Limits at (0,0) may be easier to evaluate by converting to polar coordinates. Remember that the same limit must be obtained as \(r \rightarrow 0\) along all paths to (0,0) Evaluate the following limits or state that they do not exist. $$\lim _{(x, y) \rightarrow(0,0)} \frac{(x-y)^{2}}{x^{2}+x y+y^{2}}$$
Let \(E\) be the ellipsoid \(x^{2} / 9+y^{2} / 4+z^{2}=1, P\) be the plane \(z=A x+B y,\) and \(C\) be the intersection of \(E\) and \(P\). a. Is \(C\) an ellipse for all values of \(A\) and \(B\) ? Explain. b. Sketch and interpret the situation in which \(A=0\) and \(B \neq 0\). c. Find an equation of the projection of \(C\) on the \(x y\) -plane. d. Assume \(A=\frac{1}{6}\) and \(B=\frac{1}{2} .\) Find a parametric description of \(C\) as a curve in \(\mathbb{R}^{3}\). (Hint: Assume \(C\) is described by \(\langle a \cos t+b \sin t, c \cos t+d \sin t, e \cos t+f \sin t\rangle\) and find \(a, b, c, d, e, \text { and } f .)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.