Chapter 13: Problem 37
At what points of \(\mathbb{R}^{2}\) are the following functions continuous? $$f(x, y)=\frac{2}{x\left(y^{2}+1\right)}$$
Chapter 13: Problem 37
At what points of \(\mathbb{R}^{2}\) are the following functions continuous? $$f(x, y)=\frac{2}{x\left(y^{2}+1\right)}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeAmong all triangles with a perimeter of 9 units, find the dimensions of the triangle with the maximum area. It may be easiest to use Heron's formula, which states that the area of a triangle with side length \(a, b,\) and \(c\) is \(A=\sqrt{s(s-a)(s-b)(s-c)},\) where \(2 s\) is the perimeter of the triangle.
Let $$f(x, y)=\left\\{\begin{array}{ll}\frac{\sin \left(x^{2}+y^{2}-1\right)}{x^{2}+y^{2}-1} & \text { if } x^{2}+y^{2} \neq 1 \\\b & \text { if } x^{2}+y^{2}=1\end{array}\right.$$ Find the value of \(b\) for which \(f\) is continuous at all points in \(\mathbb{R}^{2}\).
Use the gradient rules of Exercise 81 to find the gradient of the following functions. $$f(x, y, z)=\sqrt{25-x^{2}-y^{2}-z^{2}}$$
Find the points (if they exist) at which the following planes and curves intersect. $$8 x+15 y+3 z=20 ; \quad \mathbf{r}(t)=\langle 1, \sqrt{t},-t\rangle, \text { for } t>0$$
Use the method of your choice to ate the following limits. $$\lim _{(x, y) \rightarrow(1,1)} \frac{x^{2}+x y-2 y^{2}}{2 x^{2}-x y-y^{2}}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.