Chapter 13: Problem 100
Show that the plane \(a x+b y+c z=d\) and the line \(\mathbf{r}(t)=\mathbf{r}_{0}+\mathbf{v} t,\) not in the plane, have no points of intersection if and only if \(\mathbf{v} \cdot\langle a, b, c\rangle=0 .\) Give a geometric explanation of the result.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.