Chapter 13: Problem 1
Suppose \(\mathbf{n}\) is a vector normal to the tangent plane of the surface \(F(x, y, z)=0\) at a point. How is \(\mathbf{n}\) related to the gradient of \(F\) at that point?
Chapter 13: Problem 1
Suppose \(\mathbf{n}\) is a vector normal to the tangent plane of the surface \(F(x, y, z)=0\) at a point. How is \(\mathbf{n}\) related to the gradient of \(F\) at that point?
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the following limits. $$\lim _{(x, y) \rightarrow(0,2)}(2 x y)^{x y}$$
Find the points at which the plane \(a x+b y+c z=d\) intersects the \(x-y-\), and \(z\) -axes.
Find the points (if they exist) at which the following planes and curves intersect. $$\begin{aligned}&2 x+3 y-12 z=0 ; \quad \mathbf{r}(t)=\langle 4 \cos t, 4 \sin t, \cos t\rangle\\\&\text { for } 0 \leq t \leq 2 \pi\end{aligned}$$
Use the method of your choice to ate the following limits. $$\lim _{(x, y) \rightarrow(0,0)} \frac{|x-y|}{|x+y|}$$
Evaluate the following limits. $$a.\lim _{(x, y) \rightarrow(0,0)} \frac{\sin (x+y)}{x+y}$$ $$b.\lim _{(x, y) \rightarrow(0,0)} \frac{\sin x+\sin y}{x+y}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.