Chapter 13: Problem 1
Describe the appearance of a smooth surface with a local maximum at a point.
Chapter 13: Problem 1
Describe the appearance of a smooth surface with a local maximum at a point.
All the tools & learning materials you need for study success - in one app.
Get started for freeTemperature of an elliptical plate The temperature of points on an elliptical plate \(x^{2}+y^{2}+x y \leq 1\) is given by \(T(x,y)=25\left(x^{2}+y^{2}\right) .\) Find the hottest and coldest temperatures on the edge of the elliptical plate.
Match equations a-f with surfaces A-F. a. \(y-z^{2}=0\) b. \(2 x+3 y-z=5\) c. \(4 x^{2}+\frac{y^{2}}{9}+z^{2}=1\) d. \(x^{2}+\frac{y^{2}}{9}-z^{2}=1\) e. \(x^{2}+\frac{y^{2}}{9}=z^{2}\) f. \(y=|x|\)
Explain why or why not Determine whether the following statements are true and give an explanation or counterexample. a. Suppose you are standing at the center of a sphere looking at a point \(P\) on the surface of the sphere. Your line of sight to \(P\) is orthogonal to the plane tangent to the sphere at \(P\). b. At a point that maximizes \(f\) on the curve \(g(x, y)=0,\) the dot product \(\nabla f \cdot \nabla g\) is zero.
Limits at (0,0) may be easier to evaluate by converting to polar coordinates. Remember that the same limit must be obtained as \(r \rightarrow 0\) along all paths to (0,0) Evaluate the following limits or state that they do not exist. $$\lim _{(x, y) \rightarrow(0,0)} \frac{(x-y)^{2}}{x^{2}+x y+y^{2}}$$
Identify and briefly describe the surfaces defined by the following equations. $$9 x^{2}+y^{2}-4 z^{2}+2 y=0$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.