Chapter 12: Problem 82
In contrast to the proof in Exercise \(81,\) we now use coordinates and position vectors to prove the same result. Without loss of generality, let \(P\left(x_{1}, y_{1}, 0\right)\) and \(Q\left(x_{2}, y_{2}, 0\right)\) be two points in the \(x y\) -plane and let \(R\left(x_{3}, y_{3}, z_{3}\right)\) be a third point, such that \(P, Q,\) and \(R\) do not lie on a line. Consider \(\triangle P Q R\). a. Let \(M_{1}\) be the midpoint of the side \(P Q\). Find the coordinates of \(M_{1}\) and the components of the vector \(\overrightarrow{R M}_{1}\) b. Find the vector \(\overrightarrow{O Z}_{1}\) from the origin to the point \(Z_{1}\) two-thirds of the way along \(\overrightarrow{R M}_{1}\). c. Repeat the calculation of part (b) with the midpoint \(M_{2}\) of \(R Q\) and the vector \(\overrightarrow{P M}_{2}\) to obtain the vector \(\overrightarrow{O Z}_{2}\) d. Repeat the calculation of part (b) with the midpoint \(M_{3}\) of \(P R\) and the vector \(\overline{Q M}_{3}\) to obtain the vector \(\overrightarrow{O Z}_{3}\) e. Conclude that the medians of \(\triangle P Q R\) intersect at a point. Give the coordinates of the point. f. With \(P(2,4,0), Q(4,1,0),\) and \(R(6,3,4),\) find the point at which the medians of \(\triangle P Q R\) intersect.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.